If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-5t^2+100t-150=0
a = -5; b = 100; c = -150;
Δ = b2-4ac
Δ = 1002-4·(-5)·(-150)
Δ = 7000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{7000}=\sqrt{100*70}=\sqrt{100}*\sqrt{70}=10\sqrt{70}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(100)-10\sqrt{70}}{2*-5}=\frac{-100-10\sqrt{70}}{-10} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(100)+10\sqrt{70}}{2*-5}=\frac{-100+10\sqrt{70}}{-10} $
| 19x=13(x+1) | | -t^2+20t-30=0 | | -43.5=25y-15.5+y | | 2a+3÷5=a+8÷4 | | 5m^2-35m+50=0 | | 2^x=8^5x | | X^2+7x=x+7 | | 3(2a+1)=4 | | f(-3)=3(-3)-3 | | f(-3)=2/3(-3)-3 | | x²+2x-3=x²+x-20 | | 15/4-7x=19 | | x²+2x-3=x²+1x-20 | | 5x+8÷7=6 | | 130=4x-30=180 | | 18t=21 | | 3n^+4=0 | | 6−3x=5x−2 | | 50x^2-14x+1=0 | | 3n^2+4=13 | | 2x-36+x=14+x | | 3(7-1x)=33 | | 3(7-x=33 | | 18=y/5+8 | | X^2-13y^2=275 | | (2p-1)/3+2=5/9 | | 4x-5/3=5x+1/2 | | 110=2x+3x | | 2×3^x=63-3^x÷3 | | 120=4x-40 | | u+3/8=1/4 | | (3-x)/2-1=3/7 |